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A multiple-use macrocycle recognizes dibenzylammonium ions and 2,6-lutidine derivatives, each in a
[2]pseudorotaxane-like manner, through interactions with its diethylene glycol (hydrogen bonding)
and 2,6-pyridinedicarboxamide (Pd2+ chelation) spacers, respectively. We characterized these complexes
in the solid state (X-ray crystallography) and in solution (1H NMR spectroscopy). The synthesis of two
corresponding [2]rotaxanes confirmed that these recognition systems possess [2]pseudorotaxane geo-
metries in solution.

� 2008 Elsevier Ltd. All rights reserved.
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Rotaxanes and catenanes attract a great deal of attention be-
cause of their potential for applications in mesoscale devices and
molecular machinery on the nanoscale.1 The synthesis of these
interlocked systems usually requires the recognition of a macrocy-
clic unit by a recognition unit on a threadlike component.2 For the
realization of interlocked molecular switches and actuators, how-
ever, more than one type of recognition site is generally needed
to allow itinerant migration of the macrocycle(s) between different
recognition sites under the influence of an external stimulus; this
binding must not only be discriminative but also sufficiently strong
at each of these recognition stations.3 Nevertheless, macrocycles
that can recognize more than one type of guest in a pseudorotax-
ane-like manner in solution with reasonable binding affinity are
relatively rare. The crown ethers dibenzo[24]crown-8 (DB24C8)
and bis-p-phenylene[34]crown-10 (BPP34C10) are particularly
notable examples that have been used to construct several mole-
cular switches because they can recognize several guests—diben-
zylammonium ions (DBA+),4 1,2-bis(pyridinium)ethane units,5 or
bipyridinium dications6—in [2]pseudorotaxane-like geometries in
solution with sufficiently high binding affinities. Intuitively, dual-
or multiple-use macrocycles for future supramolecular catalytic
systems or for the preparation of sensitive molecular switches
can be developed by linking two or more different recognition sys-
tems as loops within a single macrocycle. The design of such a sys-
tem requires a delicate balance in the molecular structure to
ensure that both recognition systems operate independently. Pre-
viously, we reported that macrocycle 1, which possesses two xylyl
ll rights reserved.
rings linked by diethylene glycol and 2,6-pyridinedicarboxamide
spacers, acts as a host molecule that complexes diphenylurea
derivatives through the cooperative interactions with its two
opposing recognition units.7 Herein, we report that the opposing
diethylene glycol and 2,6-pyridinedicarboxamide units of this
macrocycle also act independently to recognize both the DBA+

ion and 2,6-lutidine in solution.
In an earlier study, we found that the recognition of a DBA+ ion

requires a macrocycle featuring only one diethylene glycol chain
and two phenolic rings.8 Because the 2,6-pyridinedicarboxamide
motif places the two phenolic rings a suitable distance apart for
ON
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Figure 2. (a) Top and (b) side views of the solid state structure of the [2]pseud-
orotaxane [1�DBA+]. The hydrogen bonding geometries, D���A, H���A [Å], and D–H���A
[�]: (a) 2.98, 2.11, 168.9; (b) 2.88, 2.00, 174.1; (c) 3.64, 2.97, 135.5; (d) 3.72, 2.75,
152.0. D = hydrogen bond donor, A = hydrogen bond acceptor.

268 W.-C. Hung et al. / Tetrahedron Letters 50 (2009) 267–270
the binding of a guest,9 we suspected that macrocycle 1 (Scheme 1)
would form a pseudorotaxane-like complex with the DBA+ ion, sta-
bilized primarily through [N+–H���O] and [N+C–H���p] interactions.

The 1H NMR spectrum of an equimolar (10 mM) mixture of
macrocycle 1 and DBA�PF6 in CD3NO2 at room temperature dis-
plays changes in the chemical shifts of the protons of the complex
relative to those of its free components (Fig. 1); these time-aver-
aged signals suggest that the rates of complexation and decom-
plexation of 1 and DBA+ are rapid under these conditions. The
spectrum of the complex reveals an upfield shift of the signal for
the protons of the benzylic methylene groups adjacent to the
NH2

þ center of the DBA+ ion as well as a separation of the ‘tight’
multiplet (d 3.52–3.62) for the methylene protons of the OCH2-

CH2O units of the free macrocycle into two signals (d 3.41 and d
3.62) for the complex; these features suggest the existence of
[N+–H���O] and [N+C–H���p] hydrogen bonds between macrocycle
1 and the DBA+ ion.8 Accordingly, we suspected the [2]pseudoro-
taxane-like assembly [1�DBA+] (Scheme 1) to be the likely struc-
ture of the complex formed between 1 and the DBA+ ion in
CD3NO2. From a 1H NMR spectroscopic dilution experiment, we
determined the association constant (Ka) for this complex in
CD3NO2 to be 330 ± 30 M�1.10

We grew single crystals suitable for X-ray crystallography
through liquid diffusion of iPr2O into a CH3NO2 solution of macro-
cycle 1 and DBA�PF6. The solid state structure11,12 (Fig. 2) reveals a
[2]pseudorotaxane-like molecular geometry for the complex
[1�DBA+]; it also indicates that the complex is stabilized through
both [N+–H���O] hydrogen bonds and [N+C–H���p] interactions (the
distances between the phenolic rings’ centroids and the sand-
wiched methylene carbons are both around 3.6 Å).

This result confirms our previous finding8 that, with suitable
design, weak noncovalent interactions can be harnessed to play ex-
tremely important roles in stabilizing macrocycle/dialkylammoni-
um ion complexes.

To confirm the existence of the [2]pseudorotaxane [(1�DBA+] in
solution, we constructed a [2]rotaxane based on this recognition
system. Adding triethyl phosphite (200 mM) to a solution of the
benzylic azide 2-H�PF6 (100 mM) and macrocycle 1 (150 mM) in
CH2Cl2 gave the corresponding rotaxane, which dissociated slowly
during the purification process, presumably because the stopper-
ing groups were not bulky enough.13 Indeed, when we added trib-
utyl phosphite under otherwise identical conditions, we isolated
3456789
δ

a

b

c

Ar-H
N+CH2

Hb

N-H
Ha

Hd / He

Hc

OCH2CH2OHf

Figure 1. Partial 1H NMR spectra (400 MHz, CD3NO2, 298 K) of (a) macrocycle 1, (b)
an equimolar mixture of 1 and DBA�PF6 (10 mM), and (c) DBA�PF6.
the [2]rotaxane 3-H�PF6 in 23% yield (Scheme 2).14 After dissolving
the phosphoramidate-stoppered [2]rotaxane 3-H�PF6 in CD3SOCD3,
we observed no signals for the free macrocycle 1 in the 1H NMR
spectrum, confirming the interlocked nature of its components
(Fig. 3). To test the thermal stability of 3-H�PF6, we heated this
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Figure 3. Partial 1H NMR spectra (400 MHz, CD3SOCD3, 298 K) of (a) the [2]rotaxane 3-H�PF6 and (b) macrocycle 1. #: The signal of H2O.
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solution at 323 K while monitoring its 1H NMR spectra. Again, we
did not observe any signals for the free macrocycle within 2 h, sug-
gesting that the dibutyl phosphoramidate groups are stoppers that
can mechanically interlock the macrocycle 1 along the rodlike
component of the dumbbell-shaped moiety.

Having proved that the diethylene glycol unit appended to the
two aromatic rings in 1 was capable of complexing DBA+ ions in
CD3NO2, we turned our attention to the complexing behavior of
the opposing 2,6-pyridinedicarboxamide moiety, which is known
to complex lutidine units via chelation of palladium(II).15 Thus,
we treated macrocycle 1 with Pd(OAc)2 in CH3CN for 3 h at room
temperature to afford (Scheme 3) the corresponding Pd(II) com-
plex 4 (75% yield), which we then mixed with 2,6-lutidine in CHCl3

to produce the Pd(II) complex 5 in quantitative yield. We obtained
single crystals suitable for X-ray crystallography upon liquid diffu-
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sion of iPr2O into a CH3CN solution of complex 5. The solid state
structure16 reveals (Fig. 4) a [2]pseudorotaxane-like molecular
geometry in which the Pd(II) atom holds the 2,6-lutidine and
2,6-pyridinedicarboxamide units together with their aromatic
planes aligned perpendicularly.

To construct a [2]rotaxane based on this recognition system, we
reacted the diol 6 with the Pd(II) complex 4 in CHCl3 to generate
the [2]pseudorotaxane complex 7 presenting hydroxyl groups at
its termini. Reacting complex 7 with the bulky isocyanate 8 in
the presence of di-n-butyltin dilaurate in CH2Cl2 at room tempera-
ture led us to isolate the [2]rotaxane 9 in 83% yield after column
chromatography (Scheme 3).17 The successful preparation of this
[2]rotaxane suggests that the 2,6-pyridinedicarboxamide unit
within macrocycle 1 is capable of recognizing pyridine derivatives
such as 6 in a pseudorotaxane-like manner in solution under the
templating influence of Pd(II).18
Figure 4. (a) Top and (b) side views of the solid state structure of complex 5.
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Macrocycle 1 is a multiple-use macrocycle that recognizes
diphenylurea, DBA+, and 2,6-lutidine derivatives through interac-
tions with either its diethylene glycol or Pd2+-chelated 2,6-pyridine
diamide moieties. The solid state structure of [1�DBA+] confirmed
that [N+C–H���p] interactions play an important role in stabilizing
this complex. We aim to use multiple-guest-binding hosts such
as 1 as components of future molecular catalytic systems and
controllable molecular switches.
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